
Intel® COMPOSER
XE Tips
Presenter: Kenneth Craft

Date: 03-09-2017

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

Introduction
Optimizations and Reports
Floating point Model
OpenMP SIMD
KNL Memory and Floating Point

2

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why Use Intel® Compilers?

Compatibility
§  Multiple OS Support: Windows*, Linux*, OS X*
§  Integration into development environments: Visual Studio* in Windows*, Eclipse* in

Linux*, Xcode* in OS X*
§  Compatible with most versions of the GNU* Compiler collection (gcc)
§  Source and binary compatibility with Microsoft Visual C++* Compilers
§  Most features from C99 Standard (C Compilers)
§  Full C++11 Standard support, some features from C++14 supported (C++

Compilers)
§  Fortran 2003, Many features from Fortran 2008
§  Support for Draft Fortran 2015 features

Parallelism
§  Explicit Vector Programming (OpenMP*)
§  Extensive OpenMP* 4.1 support
§  C++ Multithreading Library (Intel® TBB)

3

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why Use Intel® Compilers?

4

Performance
§  Code generation tuned for latest microarchitecture

§  New instructions enable new opportunities (SSE, AVX, AVX2, AVX-512)

§  Domain specific performance libraries (Intel® MKL, Intel® IPP)

§  Data analytics acceleration library (Intel® DAAL)

Optimization
§  Optimizing compilers

§  Automatic vectorization

§  Intel‘s optimized version of libm (Intel® Math Library libimf)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Common Optimization Options

5

Windows* Linux*, OS X*

Disable optimization /Od -O0

Optimize for speed (no code size increase) /O1 -O1

Optimize for speed (default) /O2 -O2

High-level loop optimization /O3 -O3

Create symbols for debugging /Zi -g

Multi-file inter-procedural optimization /Qipo -ipo

Profile guided optimization (multi-step build) /Qprof-gen
/Qprof-use

-prof-gen
-prof-use

Optimize for speed across the entire program
(“prototype switch”)
fast options definitions changes over time!

/fast
same as: /O3 /Qipo /
Qprec-div-, /
fp:fast=2 /QxHost)

-fast
same as:
Linux: -ipo –O3 -no-prec-div –static –fp-
model fast=2 -xHost)
OS X: -ipo -mdynamic-no-pic -O3 -no-
prec-div -fp-model fast=2 -xHost

OpenMP support /Qopenmp -qopenmp

Automatic parallelization /Qparallel -parallel

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Reports – Optimization Report

6

§  Enables the optimization report and controls the level of details
§  /Qopt-report[:n], -qopt-report[=n]
§  When used without parameters, full optimization report is issued on stdout with details level 2

§  Control destination of optimization report
§  /Qopt-report-file:<filename>, -qopt-report=<filename>
§  By default, without this option, a <filename>.optrpt file is generated.

§  Subset of the optimization report for specific phases only
§  /Qopt-report-phase[:list], -qopt-report-phase[=list]
Phases can be:

–  all – All possible optimization reports for all phases (default)
–  loop – Loop nest and memory optimizations
–  vec – Auto-vectorization and explicit vector programming
–  par – Auto-parallelization
–  openmp – Threading using OpenMP
–  ipo – Interprocedural Optimization, including inlining
–  pgo – Profile Guided Optimization
–  cg – Code generation
–  offload – offload of data and/or execution to Intel® MIC Architecture or to Intel® Graphics Technology

Note: “offload” does not report on optimizations for MIC, it reports on data that are offloaded.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

High-Level Optimization (HLO)

Compiler switches:
/O2, -O2 (default), /O3, -O3

§  O3 is suited to applications that have loops that do many floating-point
calculations or process large data sets.

§  Some of the optimizations are the same as at O2, but are carried out more
aggressively. Some poorly suited applications might run slower at O3 than O2

Loop level optimizations

§  loop unrolling, cache blocking, prefetching

More aggressive dependency analysis

§  Determines whether or not it‘s safe to reorder or parallelize statements

Scalar replacement

§  Goal is to reduce memory by replacing with register references

7

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Interprocedural Optimizations (IPO)
Multi-pass Optimization

•  Interprocedural optimizations performs a static, topological analysis of your
application!

•  ip: Enables inter-procedural
 optimizations for current
 source file compilation

•  ipo: Enables inter-procedural
 optimizations across files

-  Can inline functions in separate files
-  Especially many small utility functions benefit from IPO

Enabled optimizations:
•  Procedure inlining (reduced function call overhead)
•  Interprocedural dead code elimination, constant propagation and procedure reordering
•  Enhances optimization when used in combination with other compiler features
•  Much of ip (including inlining) is enabled by default at option O2

Windows* Linux*
/Qip -ip

/Qipo -ipo

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Interprocedural Optimizations (IPO)
Usage: Two-Step Process

Linking
Linux* icc -ipo main.o func1.o

func2.o

Windows* icl /Qipo main.o func1.o
func2.obj

Pass 1

Pass 2

mock object

executable

Compiling
Linux* icc -c -ipo main.c func1.c

func2.c

Windows* icl -c /Qipo main.c func1.c
func2.c

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Interprocedural Optimizations
Extends optimizations across file boundaries

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO
Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

/Qip, -ip Only between modules of one source file

/Qipo, -ipo Modules of multiple files/whole application

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Auto-Vectorization
SIMD – Single Instruction Multiple Data

•  Scalar mode
–  one instruction produces

one result

•  SIMD processing
–  with SSE or AVX instructions
–  one instruction can produce multiple

results

+
a[i]

b[i]

a[i]+b[i]

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

for (i=0;i<=MAX;i++)
 c[i]=a[i]+b[i];

11

a

b

a+b

+

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization is Achieved through SIMD Instructions
& Hardware

12

X4

Y4

X4 ◦ Y4

X3

Y3

X3 ◦ Y3

X2

Y2

X2 ◦ Y2

X1

Y1

X1 ◦ Y1

0 128
Intel® SSE
Vector size: 128bit
Data types:
 8,16,32,64 bit integers
 32 and 64bit floats
VL: 2, 4, 8, 16

Intel® AVX
Vector size: 256bit
Data types:
 8, 16, 32, 64 bit integer
 32 and 64 bit float
VL: 4, 8, 16, 32

X4

Y4

X3

Y3

X2

Y2

X1

Y1

X1◦Y1

0
X8

Y8

X7

Y7

X6

Y6

X5

Y5

255

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0
X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511 Intel® AVX-512, Intel® MIC
Architecture
Vector size: 512bit
Data types:
 32bit integer
 32 and 64 bit float
VL: 8, 16 Xi, Yi & results 32-bit integer

X2◦Y2 X3◦Y3 X4◦Y4 X5◦Y5 X6◦Y61 X7◦Y7 X8◦Y8

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Automatic Vectorization by Compiler

Intel Compiler will auto vectorize the source code for you if it can

Pros:

§  Minimal effort required

§  Maintainable – source code is not changed

§  Portable across Intel SIMD architectures

§  Optimal performance is possible in best cases

§  Scales forward!

Cons:

§  Compiler is conservative; will not risk generating code that could possibly be unsafe

=> Advanced optimization techniques help to improve Data Level
Parallelization using Vectorization

13

More Vectorization details in a separate training module

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Processor Specific Optimizations

 Processor specific extensions switches:

 /arch:<target> (Microsoft compatible), -m<target> (Linux*, OS X*)

§  No Intel processor check

§  No Intel specific optimizations

 /Qx<target> , -x<target>
§  Intel specific optimizations

§  Processor-check added to main-program

 /Qax<target> , -ax<target>

§  Intel specific optimizations

§  Autodispatch switch a for generating one or more additional optimized code paths

 /QxHost, -xHost
§  Generates optimized code targeted for execution on the system you compile on

14

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Based Vectorization
Extension Specification

Feature SIMD
Extension

May generate Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions as
available in initial Pentium® 4 or compatible non-Intel processors

SSE2

May generate Intel® Streaming SIMD Extensions 3 (Intel® SSE3) instructions as
available in Pentium® 4 or compatible non-Intel processors

SSE3

May generate Supplemental Streaming SIMD Extensions 3 (SSSE3) instructions as
available in Intel® Core™2 Duo processors

SSSE3

May generate Intel® SSE4.1 instructions as first introduced in Intel® 45nm Hi-K
next generation Intel Core™ micro-architecture

SSE4.1

May generate Intel® SSE4.2 Accelerated String and Text Processing instructions as
available in the previous generation Intel® Core™ processor family

SSE4.2

Like SSSE3 (or SSE4.2) but optimizes for the Intel® Atom™ processors which
support SSSE3 (or SSE4.2)

ATOM_SSSE3
(ATOM_SSE4.2)

May generate Intel® Advanced Vector Extensions (Intel® AVX) as available in 2nd
generation Intel® Core™ processor family

AVX

May generate Intel® Advanced Vector Extension (Intel® AVX) instructions
including instructions offered by the 3rd generation Intel® Core processor

CORE-AVX-I

15

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Based Vectorization
Extension Specification cont’d

Feature SIMD
Extension

May generate Intel® Advanced Vector Extension (Intel® AVX) instructions
including instructions offered by the 3rd generation Intel® Core processor

CORE-AVX-I

May generate Intel® Advanced Vector Extension 2 (Intel® AVX2) instructions as
available in the 4th generation Intel® Core™ processor family

CORE-AVX2

May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation, Conflict Detection, Exponential/Reciprocal and
Prefetch instructions for Intel® processors, and the instructions enabled with
CORE-AVX2. Optimizes for Intel® processors that support Intel® AVX-512
instructions.

MIC-AVX512

May generate Intel® AVX-512 Foundation, Conflict Detection, Doubleword and
Quadword, Byte and Word instructions and Intel® AVX-512 Vector Length
Extensions for Intel® processors, and the instructions enabled with CORE-AVX2.
Optimizes for Intel® processors that support Intel® AVX-512 instructions.

CORE-AVX512

May generate Intel® AVX-512 Foundation, Conflict Detection instructions, as well
as the instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

COMMON-AVX512

16

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr foo.c

Begin optimization report for: foo

 Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
Multiversioned v1
 remark #25231: Loop multiversioned for Data Dependence
 remark #15135: vectorization support: reference theta has unaligned access
 remark #15135: vectorization support: reference sth has unaligned access
 remark #15127: vectorization support: unaligned access used inside loop body
 remark #15145: vectorization support: unroll factor set to 2
 remark #15164: vectorization support: number of FP up converts: single to double precision 1
 remark #15165: vectorization support: number of FP down converts: double to single precision 1
 remark #15002: LOOP WAS VECTORIZED
 remark #36066: unmasked unaligned unit stride loads: 1
 remark #36067: unmasked unaligned unit stride stores: 1
 …. (loop cost summary) ….
 remark #25018: Estimate of max trip count of loop=32
LOOP END

LOOP BEGIN at foo.c(4,3)
Multiversioned v2
 remark #15006: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END
===

17

Example of New Optimization Report

#include <math.h>
void foo (float * theta, float * sth) {
 int i;
 for (i = 0; i < 128; i++)
 sth[i] = sin(theta[i]+3.1415927);
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c
Begin optimization report for: foo
 Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
 remark #15135: vectorization support: reference theta has unaligned access
 remark #15135: vectorization support: reference sth has unaligned access
 remark #15127: vectorization support: unaligned access used inside loop body
 remark #15145: vectorization support: unroll factor set to 2
 remark #15164: vectorization support: number of FP up converts: single to double precision 1
 remark #15165: vectorization support: number of FP down converts: double to single precision 1
 remark #15002: LOOP WAS VECTORIZED
 remark #36066: unmasked unaligned unit stride loads: 1
 remark #36067: unmasked unaligned unit stride stores: 1
 remark #36091: --- begin vector loop cost summary ---
 remark #36092: scalar loop cost: 114
 remark #36093: vector loop cost: 55.750
 remark #36094: estimated potential speedup: 2.040
 remark #36095: lightweight vector operations: 10
 remark #36096: medium-overhead vector operations: 1
 remark #36098: vectorized math library calls: 1
 remark #36103: type converts: 2
 remark #36104: --- end vector loop cost summary ---
 remark #25018: Estimate of max trip count of loop=32
LOOP END

18

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {
 int i;
 for (i = 0; i < 128; i++)
 sth[i] = sin(theta[i]+3.1415927);
}

(/Qalias-args- on Windows*)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c

Begin optimization report for: foo

 Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
 remark #15135: vectorization support: reference sth has unaligned access
 remark #15127: vectorization support: unaligned access used inside loop body
 remark #15002: LOOP WAS VECTORIZED
 remark #36066: unmasked unaligned unit stride loads: 1
 remark #36067: unmasked unaligned unit stride stores: 1
 remark #36091: --- begin vector loop cost summary ---
 remark #36092: scalar loop cost: 111
 remark #36093: vector loop cost: 28.000
 remark #36094: estimated potential speedup: 3.950
 remark #36095: lightweight vector operations: 9
 remark #36098: vectorized math library calls: 1
 remark #36104: --- end vector loop cost summary ---
 remark #25018: Estimate of max trip count of loop=32
LOOP END

19

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {
 int i;
 for (i = 0; i < 128; i++)
 sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx foo.c

Begin report for: foo

 Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
 remark #15135: vectorization support: reference theta has unaligned access
 remark #15135: vectorization support: reference sth has unaligned access
 remark #15127: vectorization support: unaligned access used inside loop body
 remark #15002: LOOP WAS VECTORIZED
 remark #36066: unmasked unaligned unit stride loads: 1
 remark #36067: unmasked unaligned unit stride stores: 1
 remark #36091: --- begin vector loop cost summary ---
 remark #36092: scalar loop cost: 110
 remark #36093: vector loop cost: 15.370
 remark #36094: estimated potential speedup: 7.120
 remark #36095: lightweight vector operations: 9
 remark #36098: vectorized math library calls: 1
 remark #36104: --- end vector loop cost summary ---
 remark #25018: Estimate of max trip count of loop=16
LOOP END
===

20

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {
 int i;
 for (i = 0; i < 128; i++)
 sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx foo.c

Begin optimization report for: foo

 Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(6,3)
remark #15134: vectorization support: reference theta has aligned access
 remark #15134: vectorization support: reference sth has aligned access
 remark #15002: LOOP WAS VECTORIZED
 remark #36064: unmasked aligned unit stride loads: 1
 remark #36065: unmasked aligned unit stride stores: 1
 remark #36091: --- begin vector loop cost summary ---
 remark #36092: scalar loop cost: 110
 remark #36093: vector loop cost: 13.620
 remark #36094: estimated potential speedup: 8.060
 remark #36095: lightweight vector operations: 9
 remark #36098: vectorized math library calls: 1
 remark #36104: --- end vector loop cost summary ---
 remark #25018: Estimate of max trip count of loop=16
LOOP END
===

21

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {
 int i;
 __assume_aligned(theta,32);
 __assume_aligned(sth,32);
 for (i = 0; i < 128; i++)
 sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx foo.c

Begin optimization report for: foo

 Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(7,3)
remark #15134: vectorization support: reference theta has aligned access
 remark #15134: vectorization support: reference sth has aligned access
 remark #15002: LOOP WAS VECTORIZED
 remark #36064: unmasked aligned unit stride loads: 1
 remark #36065: unmasked aligned unit stride stores: 1
 remark #36083: unmasked aligned streaming stores: 1
 remark #36091: --- begin vector loop cost summary ---
 remark #36092: scalar loop cost: 110
 remark #36093: vector loop cost: 13.620
 remark #36094: estimated potential speedup: 8.070
 remark #36095: lightweight vector operations: 9
 remark #36098: vectorized math library calls: 1
 remark #36104: --- end vector loop cost summary ---
 remark #25018: Estimate of max trip count of loop=250000
 remark #15158: vectorization support: streaming store was generated for sth
LOOP END
===

22

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {
 int i;
 __assume_aligned(theta,32);
 __assume_aligned(sth,32);
for (i = 0; i < 2000000; i++)
 sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiler Floating-Point (FP) Model

The Floating Point options allow to control the optimizations on floating-point
data. These options can be used to tune the performance, level of accuracy
or result consistency.

Accuracy
 Produce results that are “close” to the correct value

– Measured in relative error, possibly ulps (units in the last place)

Reproducibility
 Produce consistent results

– From one run to the next
– From one set of build options to another
– From one compiler to another
– From one platform to another

Performance
 Produce the most efficient code possible

– Default, primary goal of Intel® Compilers

These objectives usually conflict! Wise use of compiler
options lets you control the tradeoffs.

23

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Problem Statement
Numerical FP results change from run-to-run:

Numerical results change between different systems:

Compiler Floating-Point Model

24

C:\Users\me>test.exe

4.012345678901111

C:\Users\me>test.exe

4.012345678902222

C:\Users\me>test.exe

4.012345678901111

C:\Users\me>test.exe

4.012345678901111

C:\Users\me>test.exe

4.012345678902222

C:\Users\me>test.exe

4.012345678902222

Intel® Xeon® Processor E5540 Intel® Xeon® Processor E3-1275

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Technical/legacy
Software correctness is determined by comparison to previous (baseline)
results.

Debugging/porting
When developing and debugging, a higher degree of run-to-run stability is
required to find potential problems.

Legal
Accreditation or approval of software might require exact reproduction of
previously defined results.

Customer perception
Developers may understand the technical issues with reproducibility but still
require reproducible results since end users or customers will be disconcerted
by the inconsistencies.

Why Reproducible FP Results?

25

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Basic problem:
§  FP numbers have finite resolution and

§  Rounding is done for each (intermediate) result

Caused by algorithm:
Conditional numerical computation for different systems and/or input data can
have unexpected results

Non-deterministic task/thread scheduler:
Asynchronous task/thread scheduling has best performance but reruns use
different threads

Alignment (heap & stack):
If alignment is not guaranteed and changes between reruns the data sets could
be computed differently (e.g. vector loop prologue & epilogue of unaligned
data)

ð User controls those (direct or indirect)

Why Results Vary I

26

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Order of FP operations has impact on rounded result, e.g.

(a+b)+c ≠ a+(b+c)

2-63 + 1 + -1 = 2-63 (mathematical result)
2-63 + 1) + -1 ≈ 0 (correct IEEE result)
2-63 + (1 + -1) ≈ 2-63 (correct IEEE result)

Constant folding: X + 0 ð X or X * 1 ð X

Multiply by reciprocal: A/B ð A * (1/B)

Approximated transcendental functions (e.g. sqrt(…), sin(…), …)
Flush-to-zero (for SIMD instructions)
Contractions (e.g. FMA)
Different code paths (e.g. SIMD & non-SIMD or Intel AVX vs. SSE)
…
ð Subject of Optimizations by Compiler & Libraries

Why Results Vary II

27

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why compiler optimizations:

§  Provide best performance

§  Make use of processor features like SIMD (vectorization)

§  In most cases performance is more important than FP precision and reproducibility

§  Use faster FP operations (not legacy x87 coprocessor)

FP model of compiler limits optimizations and provides control about FP
precision and reproducibility:

Default is “fast”

Controlled via:
Linux*, OS X*: –fp-model
Windows*: /fp:

Compiler Optimizations

28

fast=2 strict … fast

speed FP precision & reproducibility

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FP model does more:

§  Value safety

§  Floating-point expression evaluation

§  Precise floating-point exceptions

§  Floating-point contractions

§  Floating-point unit (FPU) environment access

FP Model I

29

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FP model settings:

§  precise: allows value-safe optimizations only

§  source/double/extended: intermediate precision for FP expression eval.

§  except: enables strict floating point exception semantics

§  strict: enables access to the FPU environment disables floating point
contractions such as fused multiply-add (fma) instructions implies “precise”
and “except”

§  fast[=1] (default):
Allows value-unsafe optimizations compiler chooses precision for expression
evaluation
Floating-point exception semantics not enforced
Access to the FPU environment not allowed
Floating-point contractions are allowed

§  fast=2: some additional approximations allowed

FP Model II

30

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FP Model - Comparison

31

Key Value
Safety

Expression
Evaluation

FPU
Environ.
Access

Precise FP
Exceptions

FP
contract

precise
source
double
extended

Safe

Varies
Source
Double

Extended

No No Yes

strict Safe Varies Yes Yes No

fast=1
(default) Unsafe Unknown No No Yes

fast=2 Very
Unsafe Unknown No No Yes

except
except-

*/**
*

*
*

*
*

Yes
No

*
*

* These modes are unaffected. –fp-model except[-] only affects the precise FP
 exceptions mode.
** It is illegal to specify –fp-model except in an unsafe value safety mode.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Using –fp-model [precise|strict]:

•  Disables reassociation

•  Enforces standard conformance
(left-to-right)

•  May carry a significant
performance penalty

Disabling of reassociation also impacts
vectorization (e.g. partial sums)!

FP Model - Example

32

#include <iostream>
#define N 100

int main() {
 float a[N], b[N];
 float c = -1., tiny = 1.e-20F;

 for (int i=0; i<N; i++) a[i]=1.0;

 for (int i=0; i<N; i++) {
 a[i] = a[i] + c + tiny;
 b[i] = 1/a[i];
 }

 std::cout << "a = " << a[0]
 << " b = " << b[0]
 << "\n";
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  Linux*, OS X*: –[no-]ftz, Windows*: /Qftz[-]
Flush denormal results to zero

•  Linux*, OS X*: -[no-]prec-div, Windows*: /Qprec-div[-]
Improves precision of floating point divides

•  Linux*, OS X*: -[no-]prec-sqrt, Windows*:
/Qprec-sqrt[-]
Improves precision of square root calculations

•  Linux*, OS X*: -fimf-precision=name, Windows*:
/Qimf-precision:name
high, medium, low: Controls accuracy of math library functions

•  Linux*, OS X*: -fimf-arch-consistency=true, Windows*:
/Qimf-arch-consistency:true
Math library functions produce consistent results on different processor
types of the same architecture

Other FP Options I

33

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  Linux*, OS X*: -fpe0, Windows*: /fpe:0
Unmask floating point exceptions (Fortran only) and disable generation of
denormalized numbers

•  Linux*, OS X*: -fp-trap=common, Windows*: /Qfp-trap:common
Unmask common floating point exceptions (C/C++ only)

•  Linux*, OS X*: -[no-]fast-transcendentals, Windows*: /Qfast-
transcendentals[-]
Enable/disable fast math functions

•  …

Other FP Options II

34

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  The default FP model is fast but has less precision/reproducibility
(vectorization)

•  The strict FP model has best precision/reproducibility but is slow
(no vectorization; x87 legacy)

•  For best trade-off between precision, reproducibility & performance use:
Linux*, OS X*: –fp-model precise –fp-model source
Windows*: /fp:precise /fp:source
Approx. 12-15% slower performance for SPECCPU2006fp

•  Don’t mix math libraries from different compiler versions!

•  Using different processor types (of same architecture), specify:
Linux*, OS X*: -fimf-arch-consistency=true
Windows*: /Qimf-arch-consistency:true

More information:
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-
intel-compiler

Recommendation

35

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to Align Data (Fortran)
Align array on an “n”-byte boundary (n must be a power of 2)

 !dir$ attributes align:n :: array
•  Works for dynamic, automatic and static arrays (not in common)

For a 2D array, choose column length to be a multiple of n,
so that consecutive columns have the same alignment (pad if necessary)

 -align array32byte compiler tries to align all array types

And tell the compiler…
 !dir$ vector aligned OR
 !$omp simd aligned(var [,var…]:<n>)

•  Asks compiler to vectorize, assuming all array data accessed in loop are aligned
for targeted processor
•  May cause fault if data are not aligned

 !dir$ assume_aligned array:n [,array2:n2, …]
•  Compiler may assume array is aligned to n byte boundary

•  Typical use is for dummy arguments
•  Extension for allocatable arrays in next compiler version

36

n=16 for Intel® SSE, n=32 for Intel® AVX, n=64 for Intel® AVX-512

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to Align Data (C/C++)

Allocate memory on heap aligned to n byte boundary:
 void* _mm_malloc(int size, int n)
 int posix_memalign(void **p, size_t n, size_t size)
 void* aligned_alloc(size_t alignment, size_t size) (C11)
 #include <aligned_new> (C++11)

Alignment for variable declarations:
 __attribute__((aligned(n))) var_name or
 __declspec(align(n)) var_name

And tell the compiler…
 #pragma vector aligned

•  Asks compiler to vectorize, overriding cost model, and assuming all array data
accessed in loop are aligned for targeted processor

•  May cause fault if data are not aligned
 __assume_aligned(array, n)

•  Compiler may assume array is aligned to n byte boundary

37

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for Intel® AVX, n=16 for Intel® SSE

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  Pragma SIMD:
The simd construct can be applied to a loop to indicate that the loop can be
transformed into a SIMD loop (that is, multiple iterations of the loop can be
executed concurrently using SIMD instructions).
[OpenMP* 4.0 API: 2.8.1]

•  Syntax:
#pragma omp simd [clause [,clause]…]  
 for-loop!

•  For-loop has to be in “canonical loop form” (see OpenMP 4.0 API:2.6)

§  Random access iterators required for induction variable
(integer types or pointers for C++)

§  Limited test and in-/decrement for induction variable

§  Iteration count known before execution of loop

§  …

Pragma SIMD

38

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  safelen(n1[,n2] …)
n1, n2, … must be power of 2: The compiler can assume a vectorization for a
vector length of n1, n2, … to be safe

•  private(v1, v2, …): Variables private to each iteration
–  lastprivate(…): last value is copied out from the last iteration instance

•  linear(v1:step1, v2:step2, …)
For every iteration of original scalar loop v1 is incremented by step1, … etc.
Therefore it is incremented by step1 * vector length for the vectorized
loop.

•  reduction(operator:v1, v2, …)
Variables v1, v2, … etc. are reduction variables for operation operator

•  collapse(n): Combine nested loops – collapse them

•  aligned(v1:base, v2:base, …): Tell variables v1, v2, … are aligned;
(default is architecture specific alignment)

Pragma SIMD Clauses

39

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ignore data dependencies, indirectly mitigate control flow dependence & assert
alignment:

Pragma SIMD Example

void vec1(float *a, float *b, int off, int len)
{
#pragma omp simd safelen(32) aligned(a:64, b:64)
 for(int i = 0; i < len; i++)
 {
 a[i] = (a[i] > 1.0) ?
 a[i] * b[i] :
 a[i + off] * b[i];
 }
}

LOOP BEGIN at simd.cpp(4,5)
 remark #15388: vectorization support: reference a has aligned access [simd.cpp(6,9)]
 remark #15388: vectorization support: reference b has aligned access [simd.cpp(6,9)]
 …
 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
 …
LOOP END

40

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  SIMD-Enabled Function (aka. declare simd construct):
The declare simd construct can be applied to a function […] to enable the
creation of one or more versions that can process multiple arguments using
SIMD instructions from a single invocation from a SIMD loop.
[OpenMP* 4.0 API: 2.8.2]

•  Syntax:
#pragma omp declare simd [clause [,clause]…]  
 function definition or declaration

•  Intent:
Express work as scalar operations (kernel) and let compiler create a vector
version of it. The size of vectors can be specified at compile time (SSE, AVX,
…) which makes it portable!

•  Remember:
Both the function definition as well as the function declaration (header file)
need to be specified like this!

SIMD-Enabled Functions

41

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

•  simdlen(len)
len must be power of 2: Allow as many elements per argument
(default is implementation specific)

•  linear(v1:step1, v2:step2, …)
Defines v1, v2, … to be private to SIMD lane and to have linear (step1,
step2, …) relationship when used in context of a loop

•  uniform(a1, a2, …)
Arguments a1, a2, … etc. are not treated as vectors (constant values across
SIMD lanes)

•  inbranch, notinbranch: SIMD-enabled function called only inside
branches or never

•  aligned(a1:base, a2:base, …): Tell arguments a1, a2, … are aligned;
(default is architecture specific alignment)

SIMD-Enabled Function Clauses

42

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ignore data dependencies, indirectly mitigate control flow dependence & assert
alignment:

SIMD-Enabled Function Example

#pragma omp declare simd simdlen(16) notinbranch uniform(a, b, off)
float work(float *a, float *b, int i, int off)
{
 return (a[i] > 1.0) ? a[i] * b[i] : a[i + off] * b[i];
}

void vec2(float *a, float *b, int off, int len)
{
#pragma omp simd safelen(64) aligned(a:64, b:64)
 for(int i = 0; i < len; i++)
 {
 a[i] = work(a, b, i, off);
 }
}

INLINE REPORT: (vec2(float *, float *, int, int)) [4/9=44.4%] simd.cpp(8,1)
 -> INLINE: (12,16) work(float *, float *, int, int) (isz = 18) (sz = 31)

LOOP BEGIN at simd.cpp(10,5)
 remark #15388: vectorization support: reference a has aligned access [simd.cpp(4,20)]
 remark #15388: vectorization support: reference b has aligned access [simd.cpp(4,20)]
 …
 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
 …
LOOP END

43

KNL High
Bandwidth Memory

Adapting software to make best use of KNL MCDRAM

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

API is open-sourced (BSD licenses)
§  https://github.com/memkind ; also part of XPPSL at

 https://software.intel.com/articles/xeon-phi-software

§  User jemalloc API underneath
§  http://www.canonware.com/jemalloc/
§  https://www.facebook.com/notes/facebook-engineering/scalable-memory-

allocation-using-jemalloc/480222803919

malloc replacement:

45

High Bandwidth On-Package Memory API

#include <memkind.h>

 hbw_check_available()
 hbw_malloc, _calloc, _realloc,… (memkind_t kind, …)
 hbw_free()
 hbw_posix_memalign(), _posix_memalign_psize()
 hbw_get_policy(), _set_policy()

ld … -ljemalloc –lnuma –lmemkind –lpthread

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fortran:

!DIR$ ATTRIBUTES FASTMEM :: data_object1,
§  Flat or hybrid mode only
§  More Fortran data types may be supported eventually

§  Global, local, stack or heap;
§  Currently just allocatable arrays (16.0) and pointers (17.0)
§  OpenMP private copies: preview in 17.0 update 1
§  Must remember to link with libmemkind !

Possible addition in a future compiler:
§  Placing FASTMEM directive before ALLOCATE statement

§  Instead of ALLOCATABLE declaration

C++: can pass hbw_malloc() etc.
standard allocator replacement for e.g. STL like

#include <hbw_allocator.h>
std::vector<int, hbw::allocator::allocate>

Available already, working on documentation
46

HBW API for Fortran, C++

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use Fortran 2003 C-interoperability features to call memkind API

 interface
 function hbw_check_available() result(avail) bind(C,name='hbw_check_available')
 use iso_c_binding
 implicit none
 integer(C_INT) :: avail
 end function hbw_check_available
 end interface

 integer :: istat
 istat = hbw_check_available()
 if (istat == 0) then
 print *, HBM available'
 else
 print *, 'ERROR, HBM not available, return code=', istat
 end if

47

HBW APIs (Fortran)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <memkind.h>
int hbw_get_size(int partition, size_t * total, size_t * free) { // partition=1 for HBM
 memkind_t kind;

 int stat = memkind_get_kind_by_partition(partition, &kind);
 if(stat==0) stat = memkind_get_size(kind, total, free);
 return stat;
}

Fortran interface:
 interface
 function hbw_get_size(partition, total, free) result(istat) bind(C, name='hbw_get_size')
 use iso_c_binding
 implicit none
 integer(C_INT) :: istat
 integer(C_INT), value :: partition
 integer(C_SIZE_T) :: total, free
 end function hbw_get_size
 end interface

HBM doesn’t show as “used” until first access after allocation

48

How much HBM is left?

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Happens if HBW Memory is Unavailable? (Fortran)

In 16.0: silently default over to regular memory

New Fortran intrinsic in module IFCORE in 17.0:
integer(4) FOR_GET_HBW_AVAILABILITY() returns values:
§  FOR_K_HBW_NOT_INITIALIZED (= 0)

§  Automatically triggers initialization of internal variables
§  In this case, call a second time to determine availability

§  FOR_K_HBW_AVAILABLE (= 1)
§  FOR_K_HBW_NO_ROUTINES (= 2) e.g. because libmemkind not linked
§  FOR_K_HBW_NOT_AVAILABLE (= 3)

§  does not distinguish between HBW memory not present; too little HBW available;
and failure to set MEMKIND_HBW_NODES

New RTL diagnostics when ALLOCATE to fast memory cannot be honored:
183/4 warning/error libmemkind not linked
185/6 warning/error HBW memory not available
Severe errors 184, 186 may be returned in STAT field of ALLOCATE statement

49

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Controlling What Happens if HBM is Unavailable (Fortran)

In 16.0: you can’t

New Fortran intrinsic in module IFCORE in 17.0:
integer(4) FOR_SET_FASTMEM_POLICY(new_policy)

 input arguments:
§  FOR_FASTMEM_INFO (= 0) return current policy unchanged
§  FOR_FASTMEM_NORETRY (= 1) error if unavailable (default)
§  FOR_FASTMEM_RETRY_WARN (= 2) warn if unavailable, use default memory
§  FOR_FASTMEM_RETRY (= 3) if unavailable, silently use default memory

§  returns previous HBW policy

Environment variables (to be set before program execution):
§  FOR_FASTMEM_NORETRY =T/F default False
§  FOR_FASTMEM_RETRY =T/F default False
§  FOR_FASTMEM_RETRY_WARN =T/F default False

50

Floating-Point
Consistency

Getting consistent floating-point results when moving to the Intel® Xeon Phi™ x200
processor family from Intel® Xeon® processors or from Intel® Xeon Phi™ x100
Coprocessors

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Floating-Point Reproducibility

-fp-model precise disables most value-unsafe optimizations
 (especially reassociations)

§  The primary way to get consistency between different platforms (including KNL)
or different optimization levels

§  Does not prevent differences due to:
§  Different implementations of math functions
§  Use of fused multiply-add instructions (FMAs)

§  Floating-point results on Intel® Xeon Phi™ x100 coprocessors may not be
bit-for-bit identical to results obtained on Intel® Xeon® processors or on KNL

52

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization of loops containing transcendental functions

Fast, approximate division and square roots

Flush-to-zero of denormals

Vectorization of reduction loops

Other reassociations
 (including hoisting invariant expressions out of loops)

Evaluation of constant expressions at compile time

…

53

Disabled by -fp-model precise

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math functions

Implementation of math functions may differ between different processors

§  For consistency of math functions between KNL and Intel® Xeon® processors,
use

 -fimf-arch-consistency=true for both

§  Not available for KNC

§  -fp-model precise (or -fimf-precision=high) should get you close

§  These options come at a cost in performance

54

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMAs

The most common cause of differences between Intel® Xeon® processors
and Intel® Xeon Phi™ x100 coprocessors or KNL

§  Not disabled by -fp-model precise
§  Can disable for testing with -no-fma
§  Or by function-wide pragma or directive:

 #pragma float_control(fma,off)
 !dir$ nofma

§  With some impact on performance
§  -fp-model strict disables FMAs, amongst other things

§  But on KNC, results in non-vectorizable x87 code
§  The fma() intrinsic in C should always give a result with a single rounding, even

on processors with no FMA instruction

55

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMAs

Can cause issues even when both platforms support them
 (e.g. Haswell and KNL)

§  Optimizer may not generate them in the same places
§  No language rules

§  FMAs may break the symmetry of an expression:

 c = a; d = -b;
 result = a*b + c*d; (= 0 if no FMAs)

If FMAs are supported, the compiler may convert to either

result = fma(c, d, (a*b)) or result = fma(a, b, (c*d))

Because of the different roundings, these may give results that are non-zero and/
or different from each other.

56

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Reproducibility: the bottom line (for Intel64)

/fp:precise /Qfma- /Qimf-arch-consistency:true (Windows*)

 -fp-model precise -no-fma -fimf-arch-consistency=true (Linux* or OS X*)

§  Recommended for best reproducibility
–  Also for IEEE compliance

–  And for language standards compliance (C, C++ and Fortran)

§  This isn’t very intuitive
–  a single switch will do all this in the 17.0 compiler

–  -fp-model consistent (/fp:consistent on Windows*)

57 Intel Confidential

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching for KNL

Hardware prefetcher is more effective than for KNC
Software (compiler-generated) prefetching is off by default
§  Like for Intel® Xeon® processors
§  Enable by -qopt-prefetch=[1-5]

KNL has gather/scatter prefetch
§  Enable auto-generation to L2 with -qopt-prefetch=5

§  Along with all other types of prefetch, in addition to h/w prefetcher – careful.
§  Or hint for specific prefetches

§  !DIR$ PREFETCH var_name [: type : distance]
§  Needs at least -qopt-prefetch=2

§  Or call intrinsic
§  _mm_prefetch((char *) &a[i], hint); C
§  MM_PREFETCH(A, hint) Fortran

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Gather Prefetch Example

void foo(int n, int* A, int *B, int *C) {
 // pragma_prefetch var:hint:distance
#pragma prefetch A:1:3 // prefetch to L2 cache 3 iterations ahead
#pragma vector aligned
#pragma simd
 for(int i=0; i<n; i++)
 C[i] = A[B[i]];
}
icc -O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S emre5.cpp

 remark #25033: Number of indirect prefetches=1, dist=2
 remark #25035: Number of pointer data prefetches=2, dist=8
 remark #25150: Using directive-based hint=1, distance=3 for indirect memory reference [emre5.cpp(…
 remark #25540: Using gather/scatter prefetch for indirect memory reference, dist=3 [emre5.cpp(9,12)]
 remark #25143: Inserting bound-check around lfetches for loop

% grep gatherpf emre5.s
 vgatherpf1dps (%rsi,%zmm0){%k1} #9.12 c7 stall 2
% grep prefetch emre5.s
mark_description "-O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S -g";
 prefetcht0 512(%r9,%rcx) #9.14 c1
 prefetcht0 512(%r9,%r8) #9.5 c7

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Resources (Optimization)

Webinars:
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-
optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-webinar-
code-samples
https://software.intel.com/videos/from-serial-to-awesome-part-2-advanced-code-
vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops
Vectorization Guide (C):
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran
Initially written for Intel® Xeon Phi™ coprocessors, but also applicable elsewhere:
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/articles/fortran-array-data-and-arguments-and-vectorization

Compiler User Forums at http://software.intel.com/forums

60

Thank you!

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

62

